Sunday, 8 April 2018

M3: autism power!

I hate sketching globulars. Really, I hate it. The reason for that is obvious... there are simply too many stars to sketch and after hours staring at them through the eyepieces you're overwhelmed with dizziness and a hammering fatigue. You're craving to go to bed and cursing yourself because you stubbornly set out on a job that you knew was going to be impossible from the start. But there you are... half a page filled with stars and still another half to go. Should you give up and let all of those hours of work be in vain? Or should you continue unabatedly, even though you can't think straight anymore and every muscle in your body's throbbing and aching?

In the end it took me almost two nights to sketch all of this, and then almost an entire month behind the pc in order to turn it into a somewhat realistic digital image. So please, don't expect me to do this kind of insane sketch often. 

But perhaps this sketch was appropriate in this time of the year, when we're celebrating autism week, because in a sense this sketch shows what an autistic person is capable of... which extraordinary talents and rock-hard determination may lay hidden under that often absent gaze. 


About M3, it's one of the brightest globular clusters in the sky, just under the limit of naked-eye visibility. At a distance of 33,900 light-years, it lies beyond the centre of our Milky Way. Only 180 light-years across, it contains some 500,000 stars! Globular clusters are among the oldest entities in our universe, often being older than the galaxy they accompany. Therefore the stars in those clusters are also among the oldest and reddest (coolest). Strangely enough, these globulars appear mostly bright and blue through a telescope. The reason for that is that these stars are packed together so much in such a small volume that their outer layers are often stripped away through tidal interactions, exposing their hot (blue-white) interior. The blue colour I added to many of the stars in my sketch was not observed as such but was added as a random effect to create more depth (a globular truly looks three-dimensional through a binoscope) and to reflect the cluster's brilliance and overall bluish appearance.

No comments:

Post a Comment